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By C. Donald La Budde 

Abstract. In this paper a new algorithm for reducing an arbitrary real square 
matrix to tri-diagonal form using real similarity transformations is described. The 
method is essentially a generalization of a method due to A. S. Householder for 
accomplishing the same reduction in the case where the matrix is real and sym- 
metric. 

1. Introduction. In the calculation of the eigenvalues and eigenvectors of real 
symmetric matrices, several authors [1, 3, 7] have considered methods based upon 
an initial reduction of the matrix to tri-diagonal form using orthogonal trans- 
formations. (A tri-diagonal matrix is a matrix having zeroes everywhere except on 
the three principal diagonals.) Two of the advantages of this initial reduction are: 
the storage requirements decrease from 'n(n + 1) to 2n - 1 locations for the 
matrix during the computation of the eigenvalues and eigenvectors of the reduced 
matrix; and the tri-diagonal form readily yields a Sturm sequence of polynomials 
terminating with the characteristic polynomial of the matrix. Then the eigenvalues 
may be calculated rapidly and accurately using an algorithm based upon this 
Sturm sequence. 

This initial reduction to tri-diagonal form is so attractive that it seems desirable 
to devise algorithms that would apply in the case where the matrix is real and non- 
symmetric. One such algorithm [5] involves first reducing the matrix to Hessenberg 
form and thereafter completing the reduction using elementary similarity trans- 
formations. The difficulty with this method is that it requires division by elements 
of the matrix which may have become zero during the earlier part of the computa- 
tion. Hence the method may not be applicable to a given matrix. Another algorithm 
[4] involves the construction of a biorthogonal set of vectors xj , y, j = 1, . , n in 
that order given the initial vectors x1 , yi which may be chosen "almost arbitrarily." 
The difficulty here is that if x,yj = 0 and xj # 0; yj 5 0, 2 ? j < n, the con- 
struction cannot be continued and the matrix cannot be reduced to tri-diagonal 
form. The improper choice of the vectors x1, yi could cause this to happen. Then 
it would be necessary to begin all over again with different choices of x1 and yi . 

The algorithm described in this paper is a generalization of one of the methods 
[3] used to reduce a real symmetric matrix to tri-diagonal form. The matrices 
employed for this reduction are no longer orthogonal matrices, but the computa- 
tion remains in the real domain. Throughout this paper we shall be working with 
a fixed non-symmetric real n by n matrix A. 
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2. Definitions and Notation. We shall define three special types of transforma- 
tion matrices as follows: (1) for j 5 k, 

(2.1) T3k(a) = In + aEjk 

where In is the n by n identity matrix, a $ 0, and Ejk is an n by n matrix with all 
of its entries zero except in the jth row, kth column where the entry is 1; (2) for 
j X k, 

(2.2) Pjk = In 

except for the elements in the jth row jth column, jth row kth column, kth row jth 
column, kth row kth column which instead are 0, 1, 1, 0 respectively; and (3) 
matrices of the type 

Iij j' jrows 
(2.3) Vj(T) =( j Tj ( 

j columns (n - j) columns 

which will subsequently be referred to as matrices of type j. It is then obvious that 
the following equations hold: 

Tjk(a) Tjk(-a) = In 

(2.4) Pj = In 

Vj( T) Vj( T1) = In 

the latter equation being true if T is a non-singular n - j by n - j matrix. Asso- 
ciated with an arbitrary n by n real matrix A with entries ajk are the quantities 
Sj (j =1, *... , n - 2) defined as follows: 

n 

(2.5) Si =__: ajkakJ. 
k=j+l 

We now state two theorems which we will use in the subsequent development 
of the algorithm for reducing an arbitrary real square matrix to tri-diagonal form 
by similarity transformations. 

THEOREM 1. Let a matrix A be of the form 

I10 

(2.6) A = 'B 

O C 'I Dj/ 
where Aj is a j by j tri-diagonal matrix, Bjt is an n - j dimensional row vector, CQ 
is an n - j dimensional column vector, and Dj is an n - j by n - j matrix. If 
Vj(T) is a matrix of type j with T an n - j by n - j non-singular matrix, then 
A' = Vj(T)AVj(T-1) will have the same form as A with 

(2.7) A (K BA t 

O CjA Dj' 

where A ' is a j by j tri-diagonal matrix, Bj't is an n - j dimensional row vector, 
Cj' is an n - j dimensional column vector, and Dj' is an n - j by n - j matrix. 
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Proof. If the definition of Vj(T) is used, it is trivial to show that Aj' = Aj, 
Dj' = TDjT7', B T = BjtlTl, Cj' = TCj, and the zeroes in the upper right and 
lower left corners of A are preserved under the transformation 

A = Vj(T)AVj(Tl'). 

THEOREM 2. Let A, A', and Vj(T) be the matrices of theorem 1, and let Sj' be the 
quantity associated with A' defined in equation (2.5). Then Sj' = Sj . 

Proof. Let the entries of A' be denoted by a'q. Then 
n 

(2.8) Sj = E akakj = BiTC' = Bjt7Y1TC1 = B/C1 
k=j+l 

n 

=? ajkakj = Sj. 
k=j+l 

3. Description of the Algorithm. The algorithm is comprised of n - 2 steps, 
the generic jth step consisting of at most two similarity transformations on the 
matrix A using matrices of type j. (The situation at step 1 may be handled in a 
slightly different way; we will discuss this situation a little later.) If, at the begin- 
ning of the jth step, A has the form assumed in theorem 1, then, at the end of 
the jth step, A' will also have the same form (theorem 1). If, for each j, the simi- 
larity transformations can be so chosen that 

(3.1) a'k fj = (k = j + 2, ,n) 

then at the end of step n - 2, the matrix A will have been reduced to tri-diagonal 
form by similarity transformations. 

We define special matrices of type j as follows: Let a, b be arbitrary non-zero 
numbers and let x, y be n - j dimensional column vectors with entries xp, yp re- 
spectively (p = j + 1, * * , n). Then the special type j matrix V (In- + aXYt) 

has the property that 

(3.2) Vj(In-i + aXYt)Vj(In-1 + bXYt) = In 

if 

(3.3) YtX - -(a + b)/ab. 

Setting 

(3.4) A' = Vj(Inj + aXYt)AVj(In-i + bXYt), 

we see that equations (3.1) become 
n n 

(3.5) a3k + bykE xpajp = akj + axkZ ypapj = 0 (k = j + 2, * * , n). 
p=j+l p=j+1 

Equation (3.3) becomes 
n 

(3.6) XkYk = -(a + b)/ab. 
k=j+1 

We define two quantities c, d as follows: 
n n 

(3.7) c = xkalk; d = Ykakj. 
k=j+1 k=j+1 
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Solving these equations for c, d, Xk, Yk (k = j + 1, ... , n) in that order we obtain 

(3.8) 1 _ -(a + b)Sj i1: VSj2(a + b)2 + 4abSj(ay,j+l aj+1,, - Sj) 
(3.8) cd 2ab 

(3.9) xj+l = L1 + Sj-aj,j+i aj+,,j d 
[cd a aj,j+l 

(3.10) Yj+' = [ cd + - 

(3.11) Xk = -(d/a)akj, yk = -(c/b)ajk, (k =j + 2, ,n). 

We first observe that one of the variables c, d is arbitrary so for convenience we 
set d 1. Then, to solve equations (3.8)-(3.11) for the x's and y's in the real 
domain it is sufficient to require that Sj $ 0, aj,j+l $ 0, and aj+1,j 5 0. Since a, 
b are arbitrary non-zero numbers, their signs may be so chosen as to make the quan- 
tity under the radical in equation (3.8) positive. The sign of the radical may then 
be chosen so that c is finite. If these requirements are satisfied (and all the proper 
choices of signs are made) and X, Y are n - j dimensional vectors defined by equa- 
tions (3.8)-(3.11), then the similarity transformation of equation (3.4) will yield a 
matrix A' satisfying the conditions of equations (3.1). 

We now consider in detail the computations in the jth step. We assume that 
in the beginning of the jth step one of the requirements, namely Sj $ 0 is satis- 
fied. This implies that at least one term a,jajp $ 0, for j + 1 ? p < n. Then a 
similarity transformation on A using the matrix Pj+? , will interchange aj+,, 
and apr, and aj, j+ and aj, . Since Pj+,,j is a matrix of type j, the matrix A after 
this similarity transformation will still have the property that Sj # 0 (theorem 2). 
Then, with all the proper choices of signs, the vectors X, Y may be determined, 
and the transformation of equation (3.4) on A may be carried out yielding a matrix 
A' satisfying equations (3.1). 

In order to continue the algorithm into step j + 1, we must be certain that 
S+1 $ 0. (In general, a similarity transformation on A using a matrix of type j 
will alter Sj+i .) Now a, b are arbitrary (except for sign) so we may theoretically 
choose I a j, b so that S+1 $ 0. At present, there doesn't seem to be any prac- 
tical way of doing this. I a J, b I could be determined by trial and error starting, 
for example, with a = b = -2 (same sign required) or a = +1, b = -1 (oppo- 
site signs required). From these values of a, b trial vectors X, Y and hence Sj+1 
could be computed before the similarity transformation of equation (3.4) is carried 
out. If S+i = 0, the vectors X, Y could be effectively changed by either scaling 
or incrementing I a , Ib by some fixed positive constant. By scaling or incre- 
menting as often as necessary, vectors X, Y would be obtained so that S+1 $ 0. 
At step n - 2 it would not be necessary to alter a and b. 

It only remains to discuss some of the special features of step 1. Since no step 
preceded it, it might happen that SI = 0. If Si = 0 and a2l = 0, then some off- 
diagonal element a,, $ 0 if the matrix A is not in diagonal form. Then a2l, a,, 
can be interchanged by at most two similarity transformations on A using matrices 
of the kind P,8 . If Si is still zero, we may follow by a similarity transformation on A 
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using a matrix of the kind T12(a). Then the elements alk (k = 2, * , n) are altered 
as follows: 

(3.12) a12 > (a12 + aa22) -a(al + aa2l) 

(3.13) alk (alk + aa2k) (k = 3, ,n). 

The elements akl (k = 2, * , n) remain fixed. It is easily seen that by making a I 
large enough, we can make SI # 0 and ((a12 + aa22) - a(all + aa2l)) # 0 
since a21 # 0. Then step 1 may be continued as described before. 

In conclusion, we may point out some of the features (good and bad) of this 
algorithm. Each of the n - 2 steps (except possibly for the first) requires only two 
similarity transformations, the first involving no computations but only row and 
column permutations, and the second requiring only one square root. Another 
feature is the fact that at the end of step j we must have Sj = a, ?+la+1, j (theorem 
2 and equations (3.1)). This means that all of the elements a j+1 , a+l j will be 
non-zero and the characteristic polynomial of the matrix A will not factor under 
this algorithm. The most annoying feature of the algorithm is the determination of 
a, b by trial and error in each step to insure that the algorithm may be continued. 
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